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Lecture 12

Other Gain Enhancement Strategies

- Cascaded Amplifiers



Review from Last Time

Comparison of Current-Mirror Op Amps

with Previous Structures |
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Review from Last Time

Comparison of Current-Mirror Op Amps
with Previous Structures

How does the Current Mirror Op Amp really
compare with previous amplifiers or with
reference amplifier?

M : 1 1: M Perceived improvements may
‘ ‘ appear to be very significant

Vi Actual performance is not as good in
Vi 4[:M1 MZ]F N almost every respect !

@ But performance is comparable to
T

other circuits and the circuit structure
is really simple

Widely used architecture as well but
maybe more for OTA applications
3



Where we are at: Review from Last Time
Amplifier Design
* Fundamental Amplifier Design Issues
« Single-Stage Low Gain Op Amps
« Single-Stage High Gain Op Amps

‘ Other Basic Gain Enhancement Approaches

— Cascaded Amplifiers

« Two-Stage Op Amp

— Compensation
— Breaking the Loop

* Other Issues in Amplifier Design

« Summary Remarks



Review from Last Time

Current-Mirror Op Amps — Another
Perspectlve '

+ -
VOUT = VOUT

il e i

M ™

Vss Vg;:s Vss
Differential Half-Circuit

Note: Source node of M, and M, at ac ground with differential excitations



Review from Last Time

Stability

« Sometimes circuits that have been designed to operate as amplifiers
do not amplify a signal but rather oscillate when no input signal is
present (V,,=0V or [ ,.=0A) or “latch up”

» Circuits that are designed to operate as amplifiers but instead either
oscillate or “latch up” are said to be unstable

« The stability of any circuit is determined by the location of the poles
« We will discuss stability with more rigor later

« |t will be shown that if the poles of an open-loop amplifier are widely
separated on the negative real axis, then the feedback ampilifier built
using the open-loop amplifier will be stable

 And, it will be shown that if the poles of an open-loop amplifier are
not widely separated on the negative real axis, then the feedback
amplifier built using the open-loop amplifier will be unstable




Review from Last Time

Poles of an Amplifier

* The poles of an amplifier are the roots of the
denominator of the transfer function

« Each energy storage element (capacitor or

inductor) introduces an additional pole (except when
capacitor or inductor loops exist)

* The poles of an amplifier can often be
approximated by independently considering the
iImpedance facing each capacitor and assuming
all other capacitors are either open circuits or
short circuits




Review from Last Time

Poles of an Amplifier

« The dead network of a circuit is obtained by setting all
iIndependent sources to zero

« The poles of a circuit are absolute: That is, they are
independent of where the excitation is applied or where
the response is taken provided the dead networks are
the same!

« Stability is absolute: That is, a circuit is either stable or
unstable irrespective of where the input is applied or the
response is taken provided the dead networks are the
same



Review from Last Time

Increasing Gain by Cascading

Provided the stages are non-interacting

o

A1 ><OUT
IN A\ A\ A\ XOUT Xour _AAA
/ — MMM
oo A

XIN i=1

Gain can be easily
increased to almost
any desired level !




Increasing Gain b ‘*“df

w from Last Time

ascading

Assume for case of an example that all stages are identical with AOk—A0 and p, =

A
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(if inverting gain, phase will decrease from -180° to -270°)

Phase {'

* Much larger gain

* Much larger GB

* Much steeper gain transition
* Much more phase shift



Review from Last Lecture _
Review of Basic Concepts

T(S) Xout

XIN

If T(S)=% is the transfer function of a linear system

Stability

Definition: A linear system is BIBO stable if for any bounded input, the
output is also bounded

BIBO: Bounded-Input Bounded-Output

The term “stable” and the term “BIBO stable” are used interchangeably

The amplifier community and the linear analog circuits community invariably
use the term “stable”

Slight variants of the definition of stability are common but for this course minor

nuances in the definition of stability are of no concern and the concepts are
identical and inherent



Review from Last Lecture

XIN T(S) XOUT

If T(S)=% is the transfer function of a linear system

Roots of N(s) are termed the zeros

Roots of D(s) are termed the poles

Theorem: A linear system is stable iff all poles lie in the open left half-plane

If a circuit is unstable, the output will either diverge to infinity or oscillate

even if the input is setto O

A FB amplifier circuit that is not stable is not a useful “stand alone” FB amplifier
A FB amplifier circuit that is “close” to becoming unstable is not a useful “stand
alone” amplifier

An amplifier circuit that exhibits excessive ringing or gain peaking is not a useful
“stand alone” amplifier



Review of Basic Concepts

Xin Xout _N¢(s)
T(s) 1) = D)

Theorem: A linear system is stable iff all poles lie in the open left half-plane

Plausibility argument for theorem:

For any input to a linear system, the response in the s-domain can be written as

n a " b
Xour(S) = X (S)T(S) = k_ *
ouT IN kZ:;Serk kZ:;SJka

where the terms p,are the negative of the poles of T(s), the terms X, are the
negative of the roots of the denominator of the excitation and the terms a,
and b, are the partial fraction expansion coefficients of X 1(s)

If Pk is the negative of any pole, then 5kcan be expressed as
Pk = —0 — Bk

where a, is the real part of the pole and B, is the imaginary part of the pole

Pk = -Px = + )by



Review of Basic Concepts

Xin Xout _N(s)
T(s) 1) =bs)

Theorem: A linear system is stable iff all poles lie in the open left half-plane

Plausibility argument for theorem:

It thus follows that

n H h o~
Xour(t) = £'(X,y(8)T(s)) = D a,e™'e®™ + > b,e ™
k=1 k=1
Thus, for the output to be bounded for ANY bounded input, must have ALL «a, <0

That is equivalent to saying all poles must lie in the left half-plane I

If a pole is in the RHP, output for any input (even very small noise) will grow
to infinity (as long as linear operation is maintained). If the corresponding
B,=0, output will latch up. If corresponding B, # 0, output will be a growing
sinusoid (recall Euler’s identity e” =cosx + jsinx ).



Review of Basic Concepts

Theorem: A linear system is stable iff all poles lie in the open left half-plane

Open Left Half Plane Im A
Open Left Half Plane Im 4

)

Re

: : Unstable with positive real
Stable with two negative axis pole

real axis poles, two LHP
complex conjugate poles, and
two LHP CC poles



Review of Basic Concepts

Theorem: A linear system is stable iff all poles lie in the open left half-plane

Open Left Half Plane Im A Open Left Half Plane Im A

Re Re

Stable with negative real axis poles Unstable with cc RHP poles



Review of Basic Concepts

Theorem: A linear system is stable iff all poles lie in the open left half-plane

Open Left Half Plane Im A

Stable with negative real-axis poles and RHP zero

System zero locations of have no impact on stability



Review of Basic Concepts

Theorem: A linear system is stable iff all poles lie in the open left half-plane

Open Left Half Plane Im A
X
—X X o >
Re
X

Close to becoming unstable since poles are close (in
angular sense) to the RHP



Review of Basic Concepts

Xin Xout _N(s)
T(s) 1) =bs)

Theorem: A linear system is stable iff all poles lie in the open left half-plane

What are the practical implications of instability and “close to becoming unstable” ?

n H h -~
Xour(t) = £ (X,\(s)T(s)) = Zakeaktemkt N Zbke—jxkt
k=1 k1

If a pole is in the RHP (i.e. a, >0 ) output for any input (even very small
noise) will grow to infinity (as long as linear operation is maintained). If the
corresponding 3,=0, output will latch up. If corresponding B, # 0, output will
be a growing sinusoid

If a pole off the real axis is close to the imaginary axis (i.e. “close to
becoming unstable”) , the output envelope defined byeOth for any input will
decay very slowly (“ring”)



Consider Again the Frequency Response of a Feedback Amplifier with
identical gain stages

o A A;
XN —|—_ X4 A out S+ p AFB — . h
A=TTA, (5+1J +BA;
i=1
B ’
Example: Assume n=3 and BA; >>1 A - A _ Al
FB — - 3
A, p 3 1+ AB [S j ,
A - 0 — A: A :A3 i+1 BA() A
“ s+p 1,__1[ ko P Im

The poles with feedback (obtained by setting denominator of Ag(s) to 0),
P, are given by

Pr = ((—1)% B%Ao-1) p =




Routh-Hurwitz Stability Criteria:

A third-order polynomial s3+a,s?+a,s+a, has all poles in
the LHP iff all coefficients are positive and a,a,>a,

Very useful in amplifier and filter design

Can easily determine if poles in LHP without finding poles

But tells little about how far in LHP poles may be

RH exists for higher-order polynomials as well



Consider Again the Frequency Response of Feedback Amplifier

XOUT
: A A - A

O

0
S+

O

A

B

A

Example: If n=3 and stages are identical

AFB = = 0 ,
1+AB (s

3
~+1j +BA]

Im
Re
p
Routh-Hurwitz Stability Criteria:

A third-order polynomial s3+a,s?+a,s+a, has all poles in the LHP iff all
coefficients are positive and a,a,>a,

] 3
Consider DFB(S):(§+1] +BA :Ss(%]+52%+sg+(1+BA3)
B P p° P

For stability

(3p)3p?)> p°(1+BA?) 8 > BA:

Not only is the 3-stage amplifier unstable for practical BA3, it is far from being stable!



Example:

Assume an amplifier has a transfer function that has a denominator
polynomial that can be expressed as

D(s)=s3+2ks?+4s+16

Determine the minimum value of k that will result in a stable amplifier



Solution:

Assume an amplifier has a transfer function that has a denominator
polynomial that can be expressed as

D(s)=s3+2ks?+4s+16

Determine the minimum value of k that will result in a stable amplifier

Solution: Recall from the RH criteria that all roots of a third-order polynomial
of the form s3+a,s?+a,s+a, will lie in the LHP provided all coefficients are

positive and a,a,> a,

Thus, for the current problem, must have
(2k)4 >16
or
k>2



Consider Again the Frequency Response of the basic Feedback Amplifier

XNT A Xout A _ AOk pk k _ 1’ 2,3
S+pk
p - n

A=T]A.
i=1

Example: If n=3 and stages are not identical

A

AFB -
1+ AB [s j(s

DFB(S) — 83 +Sz(51 +52 +53)+S (51 52 +51 53 +52 §3)+61 52 53 (1+BAOTOT)

AsiAgAgs
S
57 j + BA02A03A03

where Agror=Ag1A02A03



Consider Again the Frequency Response of Feedback Amplifier

XN -+ X, Xourt ~
C A A =PoPe 3
S+pP,
3
B - A= HAk
i=1

Example: If n=3 and stages are not identical (cont)

DFB(S) — 83 +Sz(51 +52 +53)+S (51 52 +51 53 +52 §3)+51 52 53 (1+BAOTOT)

Routh-Hurwitz Stability Criteria:  (by assuming 1+BAjror = BAgtoT)
(B +B. + B3 )(B1 B, + B Ps + B2 Bs ) > By B2 Pa B Agror

WOLG, assume P,<P,<P; anddefine p, =k,p, and p, =k,p,

Thus the RH criteria can be expressed as

(1 +k, +K; )(kz +K; + k2k3) > BAgror



Consider Again the Frequency Response of Feedback Amplifier (cont)

XN+ X, A
Example: If n=3 and stages are not identical =

ouT

A =P P p_ya3

RH criteria: 3 ) %
(+k, +ky )k, + Ky +kyky)> BA gror A=T]A

Since A,ro7 Will, in general, be very large for the cascade of 3 stages, a very
large pole ratio is required just to maintain stability and an even larger ratio
needed to avoid a close to becoming unstable situation

Practically it is difficult to obtain such a large spread in the bandwidth of the
amplifiers

Problem can be viewed as one of accumulating too much phase shift before
gain drops to an acceptable value

For many years there was limited commercial use of the cascade of three
amplifiers (each with gain) in the design of op amps though some academic
groups have worked on this approach with minimal practical success

In recent years, industry is looking at ways to “compensate” amplifiers to work
with 3 (or more) high gain stages due to low headroom and shrinking g,,/g, ratios



Similar implications on amplifier even if not a basic
voltage feedback amplifier

w ] _>AV Vour

v—=) , A Vour
B

A

1472
Ay = YOUT - R
VIN 1+L 1+&
Ay Ry
_ Ry
P Ry+R1
V, A
Ayr = SUT - i
IN BAv

R1

Vi

VIN

M\

Vour




Similar implications on amplifier even if not a basic
voltage feedback amplifier

R
R> 2
R _ AAA—— R, 3 A%
Vi \ vV VIN_,\/\/\l \ Vourt
! VVV ouT /
V|N_/AV J Av
1+& _&
Aye = Vout _ 1 AyE = VouTt _ R1
ViN 1+A1(1+E2J VIN 1+1[1+R2j
\% 1 A R
\% 1
_ Vourt _ Ay R
VE Ry V, V(RZJ
1+A 2 Ave = JOUT _ 1
2 +Rq VF v R
IN 1+Ay 1
. . R2 +R1
These circuits have
* same 3 g = R1
» same dead network Ro+Rq
« same characteristic polynomial D(s)=1+AB  (expressed as polynomial)
* same poles

different numerators in A ¢ (different zeros for some A,))
Thus same stability issues !



Example: Determine the dc open-loop gain, dc closed-loop gain, the
open-loop poles, the open-loop zeros, the closed-loop poles, the closed-

loop zeros, and the characteristic polynomial if A(s)=107 S+2
(s+10)(s+1000)
R;
R, M\
Vi M = \ Vour

J/AV



Example: Determine the dc open-loop gain, dc closed-loop gain, the
open-loop poles, the open-loop zeros, the closed-loop poles, the closed-

loop zeros, and the characteristic polynomial if A(s)=107 S+2
(s+10)(s+1000)
R;
R, M\
Vi—AMA—N Vour
J/AV

AoL=

Open-loop zeros =

Open-loop poles =



Example: Determine the dc open-loop gain, dc closed-loop gain, the
open-loop poles, the open-loop zeros, the closed-loop poles, the closed-

loop zeros, and the characteristic polynomial if

+2
A(s)=10" S
(s) (s+10)(s+1000)
R,
R AAAY
1 V1
Vin—MN, \ Vour
J7 /AV
Ro
Avr = Vout _ R1 R
\/|N 1+ 1 1+R2 B_ R2+R1
Ay R4
Ra
_ Vour _ R
AvF Vn 4, (s*10)(s+1000)
107B(s+2)
v -§2 107B(s+2)
Ayp = YOUT - 1

VIN  (s+2)107B + (s+10)(s+1000)



Example: Determine the dc open-loop gain, dc closed-loop gain, the
open-loop poles, the open-loop zeros, the closed-loop poles, the closed-

loop zeros, and the characteristic polynomial if

R>

R
VIN ’\/\/\l v \
sy

S+2

A(s)=10" (s+10)(s+1000)

Vour —I;2107[3(S+2)

r

Avg = Vout _ 1
VIN  (s+2)107B + (s+10)(s+1000)

Drg (s) = (s+2)107B + (s+10)(s+1000)

In integer-monic form:

Drg (s) = 5% +5(10+1000+107B)+24107B

Aor=

Closed-loop zeros =

Closed-loop poles =



Example: Determine the dc open-loop gain, dc closed-loop gain, the
open-loop poles, the open-loop zeros, the closed-loop poles, the closed-

loop zeros, and the characteristic polynomial if A(s)=107 s+2
(s+10)(s+1000)
R,
R v
Vin—MA——F_ Vour Vour -E1O7B(s+2)
J:/AV AVE = U (s+2)107B + (s+10)(s+1000)

Drg (s) = (s+2)107B + (s+10)(s+1000)
In integer-monic form:
Drg (s) = 5% +5(10+1000+107B)+24107B
R2541078

R1 N R
2010'B+10%  2e107p>s1 R

AoF =
Closed-loop zeros = -2

Closed-loop poles =~ — e10’



Cascaded Amplifier Issues

For identical first-order lowpass stage gains A — Ay P A = : A,
g S+ﬁ i=1
Summary:
® Three amplifier cascades - for ideally identical stages 8> BAg

-- seldom used in industry though some recent products use this method !
-- invariably modify A

® Four or more amplifier cascades - problems even larger than for three stages
-- seldom used in industry !

Consider now two amplifiers in cascade



Consider Again the Frequency Response of Feedback Amplifier

Xn  —+ X, Xout N
A
a A, = M k=12
S+p,
~ 2
B A=11A 1%
For two-stage cascade, i.e. n=2 i=1 2
AFB = A — A01A02
1+ A
+AB (,,S + 1}(,,8 + 1) +BALA,,
P, P,

If we assume p, >p, and thus express p, =kp,
The characteristic polynomial can be expressed as

Des(s) = s® + 551 (1 + k)"‘ kﬁf (1 +BAgror )

Arg(s) is a second-order lowpass function !

Note this amplifier is stable !!!!
(at least based upon this analysis)



Two-stage Cascade (continued) A = Ao Py k

1,2

D.s(s) =’ +551(1+k)+ k5$(1+ﬁA0TOT) A :f[Ak

Consider special case of identical stages (i.e. k=1)

Deg(s) = 8% +5P,(2)+p3 (1+ BAgror ) = 8° +5P4(2)+ P (BAgror )

thus the poles of the feedback amplifier are located at

By B3 (1- BAgror ) = 541 1BAror )

Im
. * FB poles are very close to the imaginary axis
= * Very highly under-damped
* Not useful as a stand alone amplifier (excessive ringing)
8 « Other poles (not considered here) will make it unstable




Two-stage Cascade (continued)
D.5(s) =s’ +sp, (1 + k)"‘ kp; (1 +BAgror )

Feedback pole locus

Maximally Flat N
Magnitude Response

Maximally fast time-domain
response w/o ringing

K>>1

A _ A01 51
S+p,

_ A02k f)l
s+kp,

A=T]A

i=1



Review of Basic Concepts
Consider a second-order factor of a denominator polynomial, P(s),
expressed in integer-monic form

P(s)=s?+a,s+a,
Then P(s) can be expressed in several alternative but equivalent ways

(s—p1)(S—p2)
if complex conjugate poles or real axis poles of same sign

w
s® +8—2+Ww;
Q

s +s2Lw, + W}
if real —axis poles
(S—p1)(S—kp1)
and if complex conjugate poles,
(s+a+jB)(s+a—jB)
(s+re”)(s+re™)
Widely used alternate parameter sets:
{(@,32) (W, Q) (Wg,¢) (P1,P2) (P1.K) (a, B) (r, 0)}

These are all 2-paramater characterizations of the second-order factor
and it is easy to map from any one characterization to any other



Review of Basic Concepts

For complex-conjugate poles (of cc zeros)

w
tim s’+s—2+ws

o Q

’/—b
W ,
sin@=—
2Q
o
X

w, = magnitude of pole (or zero)
Q determines the angle of the pole (or zero)

Observe: Q=0.5 corresponds to two identical real-axis poles
Q=.707 corresponds to poles making 45° angle with Im axis



Feedback pole locu

Two-stage Cascade (continued)
D.5(s) =s’ +sp, (1 + k)"‘ kp; (1 +BAgror )

Alternate notation for DFB(S) Maximally fast time-domain

k=1

response w/o ringing y
Q >x
Deo(S) =8 +s—2+ k>>1
Q

or

D (S) =8° + 8280, + ®)

Thus it follows that

vl |
1+k Aoror 2Q




Feedback pole locus

Two-stage Cascade (continued)
D.5(s) =s’ +sp, (1 + k)"‘ kp; (1 +BAgror )

Alternate notation for Dg(s)

®
D..(s)=s" +36°+oo§

b Im

It was previously shown that

: 1
e:—:
sin > g

Thus, the angle of a complex-conjugate pole is completely
determined by the pole Q (or by ¢)

« When designing amplifiers, it is critical to appropriately manage the pole Q

>

» Since for two-stage cascade Q =

» A(s) is often (but not always) all poles

K
(1 N k) JBA ;o1 must have large pole spread



Magnitude Response of 2"9-order all-pole (Low-pass) Function 1

20 2§
| (=005
0.10
I k<2 Bftl) / 015
Ay e 020 | Maximally Flat Magnitude
iy 3-25 Response -no overshoot
g o = k=2 BA,
3 041 | 1
<_§ 0.5 . 0= NG
3 / l 0’
< % k>2BA,
—40
0.1 05 10 50 10

Normalized Frequency (§2) = w/wp)
From Laker-Sansen Text

For two-stage all-pole amplifiers, must have open-loop pole spread, Kk,
very large to avoid overshoot in closed-loop gain



Step Response of 2"d-order all-pole (Low-pass) Function

Maximally Fast Step
Response -no ringing

=48 0=

(@)

Quax for no overshoot = 1/2 From Laker-Sansen Text

For two-stage amplifiers, must have open-loop pole spread, k, very large
to avoid ringing in step response



_ Feedback pole locus
Two-stage Cascade second-order (COntinued)

Des(s) = s® + sp, (1 + k)"‘ kﬁf (1 +BAgror )

Alternate notation for Dg(s)

1

DFB(S):SZ+S%+(D§ K

\«
1
Maximally Flat O = NG
Magnitude Response 2 N
N

Maximally fast time-domain
response w/o ringing .

k>>m




Stay Safe and Stay Healthy !







